IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 7, NO. 4, AUGUST 1997 575

Multiresolution Image Sensor

Sabrina E. KemenyMember, IEEE Roger Panicacci, Bedabrata Pain,
Larry Matthies, and Eric R. FossurBenior Member, IEEE

Abstract—The recent development of the CMOS active pixel problems become especially severe for image processing tasks

sensor (APS) has, for the first time, permitted large scale in- performed on large format imagers (e.g., 10241024) that
tegration of supporting circuitry and smart camera functions .o raad out at video rates (30 frames/s)

on the same chip as a hlgh-pgrformance image sensor. This CMOS active pixel sensor (APS) technoloay allows the
paper reports on the demonstration of a new 128< 128 CMOS : P .( ) ay .
APS with programmable multiresolution readout capability. By ~integration of support electronics and smart camera functions
placing signal processing circuitry on th_e imaging focal pla_ne, the onto the same chip as a high-performance image sensor
image sensor can output data at varying resolutions which can [6]. The integration of support electronics such as timing

decrease the computational load of downstream image processing. . .
For instance, software intensive image pyramid reconstruction and control, correlated double sampling, and analog to dig-

can be eliminated. The circuit uses a passive switched capacitor ital conversion leads tQ fewer c.omponents, thus increasing
network to average arbitrarily large neighborhoods of pixels System robustness while reducing system mass and cost.
which can then be read out at any user-defined resolution by The implementation of programmable multiresolution readout
configuring a set of digital shift registers. The full resolution 45y ynprecedented camera functionality which eases the
frame rate is 30 Hz with higher rates for all other image f . ts of d t . .
resolutions. The sensor achieved 80 dB of dynamic range while periormance requirements o OWUS ream image processing.
dissipating only 5 mW of power. Circuit error was less than The CMOS APS technology also enjoys other advantages over

—34 dB and introduced no objectionable fixed pattern noise or its charge-coupled device (CCD) counterpart such as ultra low

other artifacts into the image. power performance (50-160lower than comparable CCD
Index Terms—Focal plane array, image processing, imager, Systems) and increased radiation hardness [7]. CMOS APS
multimedia, sensor. architectures [Fig. 1(a)] allow—y addressability of the array

for windows of interest and sparse sampling readout of the
array. Unfortunately, sparse sampling the array, for example,
] ] . ] by reading out every fourth pixel of every fourth row, reduces
FOR a variety of image processing tasks, such as biologigak amount of image data by a factor of 1/16 but introduces
vision modeling, stereo range finding, pattern recognitiogizsing into the image. In the multiresolution sensor, regions
target tracking, and transmission of compressed images, ilyShe array are averaged together (block or kernel averaging)

desirable to have image data available at varying resolutio&?d read out [Fig. 1(b)], leading to data reduction without
to increase processing speed and efficiency. The user can t?f?é‘sing effects.

Ohbta'” E frahme gf dfga I"_’“ the lowest resolution necessary 10k q mjitiresolution CMOS APS is a 128 128 photogate
the task at hand and eliminate unnecessary processing st y that is programmable to read out any size n block

The_ multiresolutipn image datz_a is usually gt_'-.\nerated throug pixels (kernel). Each kernel value represents the average
an image pyramid approach (implemented in software), anj all the pixel values in its region. Averaging is done in the

has been used extensively in recent years [1]-{4]. Typicallé/ lumn readout circuitry so that the average value is based

each 'mage IeveI.|s a low-pass filtered and down'-samplg a full resolution image. Combining the senso&s-Y
version of the prior level, although block averaging an " : . .
ressability with programmable resolution, the device can

. ad
down sampling can also be used to generate the pyramlcﬁ. : - -
. . . . .achieve true electronic zoom capability. In a standard digital
[5]. In software, construction of the multiresolution pyramid is

. . . . .camera, electronic zoom is achieved by mapping each pixel in
often the most computationally intensive and time consuming . . !

. : . - a small area of interest to several display pixels. In contrast,
portion of the image processing task. For applications whefe

N he multiresolution sensor allows one to read out a small area
power consumption is of concern, the power consumed E)

the processor while performing this task can be critical. The% Interest .at a higher resolution thaﬁ t.h? full frame SL.JCh
that each pixel may be mapped to an individual display pixel
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Fig. 1. (a) Programmable multiresolution CMOS active pixel sensor archi- . . . .
tecture and (b) example of column’s functional configuration for 3 block Fig. 4. Ideal SW|t_ch and capacitor model for six columns configured for 3
averaging. (Actual neighborhood size is programmable.) x 3 block averaging.

the array is a network of capacitors to store pixel reset and
@ signal levels. The column circuitry also contains an additional
capacitor and a set of switches to the adjacent column to
perform averaging on any size square array of pixels called
a kernel (rectangular kernels are also possible). Resolution of
the sensor is set by the size of the kernel. Large kernels sizes

> H> | H> are set for low resolution imaging requirements. ThieY’

_ 3 _ _ addressability of the sensor allows the user to zoom into areas
Fig. 2. SensorX-Y addressability and multiresolution readout allows th%f interest
user to zoom into an area of interest with increased resolution. ’

Fig. 3 shows a block diagram of the sensor. A decoder at
) ) ) o ) the side of the array selects a row of pixels for readout. Each
_rlcated _chlp. Finally, applications of the sensor are d|scuss§9(e| is controlled by a photogate signal enabling readout
in Section V. of integrated charge, a reset signal, and select signal to
enable the buffered pixel data to drive the column output
line. Column parallel circuitry at the bottom of the array
samples the addressed row of pixel data simultaneously. The
A. Design Overview kernel size determines how a set of shift registers in the
The sensor contains a 128128 photogate pixel array sim-column circuits are configured. These shift registers control
ilar to previous APS arrays demonstrated at the Jet Propulstoow the columns containing stored readout data are averaged
Laboratory (JPL) [6]-[10]. At the bottom of each column irand where the averaged row data is stored for subsequent

Il. DESIGN AND OPERATION
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Fig. 5. Multiresolution column processing circuitry for three columns.

processing. A second decoder at the bottom of the arrdgselected, denoted by bit 0 over the switch), while the
controls which columns containing the processed data amer switches are closed (i.e., selected, denoted by bit 1
read out. The sensor’s differential output circuitry performaver the switch). Pixel signals are sampled onto the column
correlated double sampling (CDS) to suppress pixel KTC noig&/eraging capacitors by globally pulsing (closing) the signal
1/f noise, and fixed pattern noise. select switches (S). Charge redistributes such that the voltage
Row pixel data is read onto a column averaging capacit8h each capacitor in each block of three capacitqrg., is

with switches to its neighboring columns that are subs&€ same such that

quently enabled resulting in averaged column data for that 1 &

row (Fig. 4). Averaged column data for that row is stored on a Vi ker = — Z Vi

second bank of capacitors in one of the columns of the kernel. [t

Data from successively read out rows is stored in each of th . . .
remaining columns in the kernel. Shift registers in the read yheren is the horizontal size (nymber of columns) of the
S ) - . .Dlock average (kernel){;_; the pixel voltage value of the

circuitry are configured according to kernel size to determi

hich switch bled ; i 4 wh e—k)th column, andV;_ .., is the average value for thih
which switches are enabled to perform averaging and Whelg, i the kernel. These kernel row averages are then sampled
the averaged column data is stored.

onto the first capacitor in the-capacitor block of the row
Once alln rows of the kernel are read, they are averagegeraging bank of capacitors. Column averaging is repeated

by connecting the second bank of capacitors together aph the next pixel row {+ 1) and these new/(; 1) xer
mixing the charge. A shift register configured to enable dumnparnel averages are sampled onto the second capacitorsin the
switches to correct for switch feedthrough effects is alsgapacitor blocks of the row averaging bank of capacitors. The
included. Both reset and signal levels are processed fora kermcess is repeated until all rows have been processed and
so that correlated double sampling and double-delta samplingamples have been collectedriradjacent capacitors in the

operations can be performed. row averaging bank. The temporal switching sequence (digital
Operation will be illustrated by stepping through the seattern) is shown for the % 3 kernel case (Fig. 5). After
quence for 3x 3 block (kernel) averaging (Fig. 4). In thisthe n-samples(V;, Viy1, -+, Viyn-1)) have been collected,

case, every third column average (CA) switch is open (i.eharge is redistributed by pulsing the row averaging (RA)
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Fig. 6. Transistor-level schematic of column circuit. Capacitors are poly-diffusion linear capacitors.
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Fig. 8. (a) 4x 4 block averaged time and (b) 1/4 subsampled image (no
averaging).

for the first 3 x 3 kernel
Viero = 1/2{1/3[1/3(Vo,0 + Vo,1 + V0, 2)
+1/3(Vi,0 + V1,1 + Vi,2)
+1/3(Va,0+ Vo, 1+ Va,0)]}

These kernel values are then scanned out of the array by
reading out everyith capacitor in the row average bank. The

switches with the same pattern used for the column averagfifyV averaging capacitors are then reset (circuitry not shown)
switches, resulting in the final block average and the process is rep(_eated 'to genera}te the next row of kernels.
Note that in the configuration described above, kernels must

m be either square or rectangular, where the number of rows must
Vier = 3 Z Vi_ker be less than or equal to the number of columns.
=1

Fig. 7. Sensor’s full resolution image (128 128).

wherem is the vertical size (number of rows) in the kernelB- Column Processing Circuitry

The constant factor of 1/2 arises from charge sharing betweerShown in Fig. 5 is the actual column parallel circuitry
the column and row averaging capacitors when the colurfor three columns. There is one bank of column averaging
average is sampled onto the row averaging capacitor. Thaapacitors and two banks of row averaging capacitors (rather
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Fig. 9. (a) Full resolution sensor output for one row of pixels and (b} 4 kernel output from sample image.
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than the single bank shown in Fig. 4). One bank storesmto row averaging capacitor), and VR (sample reset onto row
the row average pixel reset levels, and the other stores theeraging capacitor). Each of these global signals is gated with
row average pixel signal levels in order to perform on-chithe output of one of the two configuration shift registers. The
double correlated sampling. The column averaging bank @A and RA signal are gated with the output of the same shift
used sequentially to horizontally average together the kermegister (CARA shift register). The VS and VR signals are
row reset levels followed by the signal levels. The kerngjated with the output of the second shift register (VSVR shift
reset switch to ground is shown as well as the column buffeggister).
amplifier for generating ¥,;;R and \,+S. The buffer amplifier = The transistor-level schematic of the column circuit is
is only enabled when the column is selected for readout. shown in Fig. 6. The signals GARA;, VS;, and VR are the
The digital patterns shown are an example of the timing foutputs from the corresponding global signals gated with the
a 3 x 3 kernel. They are generated by gating the output ehift register output bit for that column. The buffer amplifier
the configuration shift registers and the timing signals shovim a p-channel source follower. The CB signal is part of the
in Fig. 5. The global timing signals are CA (enable columdouble delta sampling readout scheme as reported in [9] used
averaging), RA (enable row averaging), VS (sample sign@ reduce column fixed-pattern noise.
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TABLE |

SENSOR CHARACTERISTICS
Array Size 128x128
Pixel Size 24 pm
Technology 1.2 um n-well CMOS (HP)
Saturation level Vsat 1200 mV
Conversion gain 8 uVl/e
Read Noise (full resolution) 116 pV rms (15 ¢ rms)
Dynamic Range 80 dB
Power@30Hz frame rate  Vdd=5V, Vsat = | 5 mW
1200mV -

Vdd=4V, Vsat = | 1.25 mW
500mV
Fixed Pattern Noise 3 mV pp (025% of
saturation)

Kernel averaging error <2%

I1l. EXPERIMENTAL RESULTS

The sensor was fabricated through MOSIS in the HP,ihP-
n-well CMOS process. The 12& 128 photogate sensor |
has a pixel pitch of 24um. The total chip size is 4.8 ¢
6.6 mm. Table | lists some of the sensor characteristics ft.'-‘m pl
full resolution operation. -

Fig. 7 shows a full resolution image of a test pattern used 1-!ﬂ +
demonstrate the sensor’s block averaging. Fig. 8(b) shows t
same image for the sensor operating in a subsampling mo;
where every fourth column of every fourth row is read with
no averaging. Because the test target contains relatively hi
spatial frequency patterns, the subsampled image produc
dramatic aliasing. Comparing this 3232 image with the full ] L I T I E
resolution 128x 128 image shows the appearance of bof)y 10, photograph of completed programmable multiresolution APS (128
fewer stripes and diagonal stripes rather than parallel stripesi2s array) IC.
relative to the edge of the square. Thex332 image with 4x
4 kernel averaging [Fig. 8(a)] reduces this effect because @itch feedthrough _compensation did not have a significant
pixel array is read at full resolution and subsequently averag&dfect of the averaging accuracy.

To measure how well the multiresolution sensor performs Table | lists the results from sensor characterization tests
averaging, a test pattern containing a black and white stri .iénilar to those (_jescribed_in.[9]. The sensor exhibited very low
was imaged. The black-white edge (defocused) was positioriégd pattern noise and dissipated very little power. Overhead
so that half the pixels in the kernels on the edge are bladRr Performing on-chip block averaging is a small percentage
Thus, the sensor output of the kernels aligned on top of tAEthe sensor readout time and total power consumption. For
edge ideally should equal one-half of the difference betwelfyver resolutions, the frame rate increase above 30 Hz is
the totally white and black pixels. To measure the individu@PProximately proportional to the number of pixels,x n,
pixels in the kernel, subsampled data was first measurdy.the kemel.

Based on this subsampled raw image data, block averages
were calculated for the pattern. This data was compared to IV.  APPLICATIONS
the multiresolution sensor’s output at different kernel sizes. Multiresolution readout capability is useful in a wide variety

An example of the sensor’s output for one of the rows isf imaging applications where real world systems impose con-
shown in Fig. 9 where the sensor’s full resolution row data artraints on format choices, processing speed, and bandwidth.
4 x 4 kernel output data are shown. The row shown [Fig. 9(a} few applications that greatly benefit from such capability
is one of four rows used to calculate the average from the falfe described below.
resolution image for comparison with the on-chipx 4 kernel Data Reduction:In many imaging applications today,
average. Fig. 9(b) illustrates the »4 4 kernel producing an bandwidth limitations impose severe constraints on the
output voltage at the average value of the four pixels at tieanipulation and transmission of image data. From computer
black—white stripe edge (pixels in columns 65-68). Image datdephony to internet Vmail, transmission of image data is
for 2 x 2, 4 x 4, and 8x 8 kernel sizes were acquired forbecoming increasingly common. Tremendous amounts of
this test pattern. Analysis of kernel data for the entire fram@mpression are needed to realize these functions (e.g., a com-
versus the off-chip block average data based on full resolutipression ratio of 320: 1 is required to transmit a video graphics
data shows that the sensor is accurate to within 2%85(dB) adaptor (VGA) 640x 480-resolution image across a 28.8-kb/s
of the ideal average value. The use of dummy switches fphone line at video rates). Even without transmission, interfac-

.
.
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Fig. 11. Programmable multiresolution sensor output for (a) full resolution, (k)2kernel, (c) 4x 4 kernel, and (d) 8 8 kernel configurations.

ing standard electronic cameras to a PC poses a compressidn the commercial arena, subject tracking can be used
challenge (e.g., 500 kbytes to 2 Mbytes per second enhangedapplications such as PC videoconferencing and perime-
parallel port (EPP), 12 MB for universal serial bus (USBder surveillance to reduce the required bandwidth of video
interface). One approach to achieving such compression isttansmissions. In the former, a low resolution “coarse” image
reduce the amount of data being transmitted or compressisdquickly read out and the subject of interest is identified.
In current CCD-based systems, such image editing may Ipesubsequent frames, a high resolution window around the
realized by either throwing away image data (e.g., transmit tekabject is read out and transmitted. Frequent repetition of this
center of the image) or through image pyramid reconstructigorocess is used to update the desired readout window. In the
Unfortunately in the latter case, the required decimation awdse of perimeter surveillance, the multiresolution capability
low-pass filtering is usually implemented in software, locatethn be exploited in a variety of ways. For example, low
beyond the bandwidth limited transmission link. Alternativelyresolution imagery can be continually transmitted to a central
memory and specialized hardware (digital signal processipgocessing workstation until movement or another triggering
(DSP) or custom application-specific integrated circuit (ASIGhechanism is alerted which would then signal the sensor or
[11]) may be integrated in the camera head to implement teensor bank to switch into high-resolution mode and start
image reconstruction. recording image data.

In contrast to these approaches, the multiresolution sensoBiological Vision: There is a trend among some researchers
may be programmed to readout a lower resolution imagetatay [12], [13] to mimic simple biological vision systems in
any user-defined frame rate (including video or faster) witkilicon. The multiresolution architecture can be extended to
no additional hardware (decimation and averaging occur dmelp realize these goals. Specifically, in the case of a retina,
chip) or software overhead. The same optics setting can &éoveated architecture in which the center pixels are read out
used for the varying resolutions maintaining a constant fiedd high resolution while the outer pixels are readout at lower
of view such that no part of the scene needs to be discardedsolutions is required. In the current sensor, kernel size is

Robotics: The primary motivation for the work describedimited to either square or rectangular pixels and kernels must
in this paper was to reduce the computational complexity b of uniform size in the vertical direction. It is possible to
algorithms devoted to autonomous navigation for vehicles wary the kernel size in the horizontal direction. In order to
space. For power- and size-constrained missions, the multir@smic biological systems, programmability of kernel size in
olution imager serves a dual purpose: navigational sensor dradh directions in a single frame would be required but could
science sensor. In the former, for instance, low resolution ddtte realized with an extension of the approach described here.
may be used for stereo vision-based autonomous navigation,
while high-resolution visual data can be obtained for public
relations and science. The multiresolution sensor, shown in Fig. 10, demonstrates

Target Tracking: In both commercial and military applica-the versatility of CMOS active pixel image sensors. On-
tions, real-time tracking poses a difficult challenge. In a variethip column circuitry performs block averaging using pro-
of defense imaging systems, for instance, high-speed targegmmable kernel sizes. The images of George Washington in
acquisition, tracking, and homing are essential operations. Thig. 11 from a dollar bill illustrate the sensor’'s multiresolution
multiresolution sensor can play a pivotal role in reducing thedility. Shown are images at full resolution, 2 2, 4 x 4,
amount of image data that must be processed. For exampleg 8 x 8 kernel configurations. The accuracy of averaging
depending on the distance to the expected target, the sensawithin 2% of the average calculated from full resolution
can be read out at the lowest resolution necessary such fihage data. With power consumption as low as 5 mW and
the target covers a small number of pixels. Once potent@0-Hz minimum frame rate operation for any resolution, this
targets are identified, small windows around each possilgeogrammable multiresolution sensor can significantly reduce
target can be read out at high resolution leading to better cluttemmera system complexity and power where multiresolution
rejection and faster processing speed. Tracking and homintage processing is required, yet retain very high imaging
can also benefit from similar optimal adjustment of resolutigmerformance of 80-dB dynamic range comparable to the very
and windowing. best CCD'’s.

V. SUMMARY
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